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Influence of a modulated surface on the properties of liquid-liquid interfaces
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We present an extension to the linear Gouy-Chapman theory for an interface between two immiscible
electrolytesITIES) with an interface that deviates from a planar geometry. This theory takes into account the
proper boundary condition for an ITIES, i.e., neither the potential nor the surface charge is fixed at the
boundary between the electrolytes. Instead, the dielectric displacement at the interface position is allowed to
respond to the perturbation from a flat surface. The linear and quadratic response functions are calculated
self-consistently. We derive a roughness function in terms of a height-height correlation function of the
surface, which determines the behavior of the capacity and the free energy of a modulated ITIES. Furthermore,
we calculate the appropriate electrostatic contribution to the elastic bending modulus of the interface.
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[. INTRODUCTION layer, whose thickness extends over several solvent diam-
eters[5]. Of course, the extent of this boundary layer de-
In recent years liquid-liquid interfaces have received greapends on the solubility of one solvent in the other. Hence the
attention because they play an important role in biologicaldifferent results need not be contradictory, but are due to the
chemical, and physical systems. For instance, in biology thegolvent parameters used in the calculations.
can serve as a model for membranes separating two electro- SO far the theoretical investigations of ITIES have been
|ytes and in Chemistry they are important for reactions in_restricted to a planar geometry of the interface. In this work
volving ion transfer across an interface. Since in many rewe Will follow another line and investigate the effect of
spects the interface between two immiscible e|ectro|yténodulated interface geometries. The interface between two
solutions (ITIES) shows an analogy to the metal-solution liquid phases is not planar, but roughened due to thermal
interface, they have also attracted the interest of electrofluctuations of the interface position. The size of this effect is
chemists. mainly determined by the surface tension of the system. Mo-
There have been a considerable number of experimentiﬂcmar dynamics simulations of an interface between water
investigations using classical electrochemical techniquednd 1,2 DCE6] have shown that the structure of the inter-
such as voltammetry and electrochemical impeddmeRe- face can be described within the theory of capillary waves
cently, also more modern techniques such as second hdrl0.11. If one neglects the effects of gravitation, the mean
monic generatior{2] have been applied to these systems.square height fluctuation of the surface in Fourier space is
However, in spite of these efforts, and in contrast to metalgiven by
solution interfaces, only little is known about the structure of
liquid-liquid interfaces. One point of view is that the solvents <ﬁz(q)>: ki-lz_, 1)
form a sharp boundary and a compact layer of solvent mol- vq
ecules, which the ions cannot penetrgg@é The other view R
claims the existence of a mixed layer of the solutiphisOn  whereh(q) is the Fourier transform of the function describ-
the other hand, there are strong hints that the interfaciahg the surface modulatiom, is the wave vector, anglis the
structure of liquid-liquid interfaces is different from metal- surface tension. Since the surface tension for liquid-liquid
solution interfaces, in the absence of specific adsorption. Simterfaces is much lower than for metal-solution interfaces
the measured capacity at low electrolyte concentrations ié.g., 30 dyn/cm for the 1,2 DCE—water interfdde] and
found to be higher than the Gouy-Chapman capddit$], 415 dyn/cm for the Hg-water interfadd.3]), the thermal
while at metal electrodes it is lower. excitation of these fluctuations can be quite important. From
In contrast with experimental investigations, there havestatistical mechanics of membrang$3] it is also well
been only relatively few theoretical investigations of liquid- known that there is another kind of fluctuation that is gov-
liguid interfaces and they also provide no unigue picture oferned by the elastic bending modukisof the membrane if
the interfacial structure. Computer simulations of these systhe surface tension is small. For this type of fluctuation the
tems[6,7] show that there is a sharp interface at which themean height fluctuation is given by
two liquids do not mix, whereas recent calculations based on
the density functional formalism predict a mixed solvent
layer[8]. This is also confirmed within a simple lattice gas
model[9]. Including ions in this approach, it was also pos-
sible to explain the higher capacity compared to the Gouy#or long wavelengths thesmirvature fluctuationsre lower
Chapman capacity by the existence of a mixed boundarin energy ¢(q* than the surface-tension fluctuations
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(~¢?) and they are therefore expected to be even more imef the surface. The investigation of these effects may be the

portant for the modulation of the surface. topic of future work, but we think that the main aspects can
This short discussion shows that for ITIES it is natural tobe understood also from a more simple one-dimensional

consider an interface that is perturbed from a flat geometrymodel of the surface modulation.

In this work we will assume that the interface position can be

described by a given height functioh(x,y), which is A. Boundary condition

mainly determined by the properties of the interface between The mathematical problem in the spirit of the Gouy-

the two pure solvents. Furthermore, we will focus only on anCha man theorv can be stated as follows. We have to solve
ideally polarizable interface and neglect the effects of spe: P y '

cific adsorption or ion association. Having this kind of SyS_the two-dimensional linearized Poisson-Boltzmann equation
tem in mind, we will dgrlve an e>§tenS|on to the linear Gouy- (Jt gy — KiZ)V(X,Y):Ci , 3)
Chapman theory, which takes into account the modulated

geometry of the interface. We are aware of the much morgvherec; is a constant, which is usually set to zero on one
elaborate theories of electric double laygtd], which go far  side. For a 1-1 binary electrolyte the inverse Debye length is
beyond the mean-field level of the Gouy-Chapman theoryKi:)\Bé: lpei€?l€KsT, Wherepg; is the total ionic density
taking into account many microscopic details of the system;n the pulk of the solutioni, €= e, €0 iS the solvent di-
However, all these theories deal with highly symmetric ge-gjectric constant, and=1 for y> h’(x) andi=2 fory
ometries such as planes, cylinders, and spheres. Therefore,&th(x)_ The potentialV(x,y) is the total potential of the
should be of basic interest to investigate the effect of mOdU‘system, but image effects due to the different dielectric con-
lated surfaces on the interfacial properties within a simplésiants are not contained. The height functiqm) describes
theory in order to understand some main physical aspects, gle modulation of the boundary between the two solutions

least on a qualitative level. By main physical aspects Weynq is assumed to be known. Furthermore, we assume that
mean the interplay between the two Debye lengths of the

system and the two new length scales introduced by the sur- +oo
face modulation, namely, the height of the modulation and f . h(x)=0. 4
its characteristic length, e.g., the wavelength in the case of a

periodic surface. Moreover, the Gouy-Chapman theory is byrhis can always be achieved by a suitable choice of the
far the most used theory for the classification of experimentafnjdplane position. If we consider the flat surface as the ref-
results and the linearized version should give a reasonablgence system, that is, the spontaneous curvature of the sur-
description for low potential drops across the interface.  face is zero, this assumption entails no loss of generality.

The approach we used in this work is similar to that of | order to solve this second-order partial differential
Goldsteinet al.[15], who considered an interface between agquation we need two boundary conditions. Consider first the
modulated surface on one side and an electrolyte solution ofse of a metal-solution interface, where the metal on side 2
the other. The same technique was later used by Daikhipy<h(x)] is assumed to behave ideally. Then E3).has to

et al.[16] in order to discuss the capacity at a rough metalye solved only for the half spage>h(x) with the Dirichlet
solution interface. In the case of ITIES, however, the boundyoundary conditions

ary conditions used by Goldstegt al. [15] are inappropri-

ate, and one has to employ a much more complicated one. V(x,y=h(x))=Vy=const, V(x,2)=c;=0. (5
This will be developed in Sec. Il, where we describe the

theoretical method for the solution of the linear Poisson-This problem was solved by Goldste# al.[15]. They also
Boltzmann equation and calculate the two-dimensional posolved the problem for a Neumann boundary condition at the
tential profile. In Sec. Il we calculate the capacity for the interface:

modulated liquid-liquid interface and compare it to the

Gouy-Chapman result for the flat interface. We also give an [~ N(X)VV(Xy)]ly=nx=0oo=const, V(x,®)=c,=0,
explicit example for a simple deterministic height function ®)

and discuss the results for different parameters. In Sec. IVvheren(x) is the normal vector pointing from the interface

we investigate the influence of the curvature on the free eng,,arqs side 1. Both cases correspond to the situation where

ehrgy IOf the sygtem an.(g dgrlve thﬁ aplpro_prlé)elte Otla'xpress(ljor; f%e reference electrode far from the interface is a flat equi-
the electrostatic contribution to the elastic bending modulusy,ia i) Jine, i.e., it does not follow the modulation of the

Finally, we give a short summary and an outlook in Sec. V.jnterface. This is the usual electrochemical setup for measur-
ing or imposing a potential drop across the interface. It is
well known, but we stress it here again that for a flat surface
both types of boundary conditions yield the same potential
As already mentioned in the Introduction, we have to deaprofile (and also for other highly symmetric geometries such
with a boundary value problem for a complicated geometryas spheres and cylindérdowever, this is not the case for
In order to simplify the calculations, we consider only a two-an arbitrary surface and we will see that this leads to impor-
dimensional system, that is, the surface is modulated in onlyant differences in the electrical and thermodynamic proper-
one spatial direction and is translationally invariant along theiies of modulated double layers.
orthogonal direction in the midplane of the surface. A two- In the case of an ITIES, where neither of the two sides
dimensional modulation of the surface can introduce soméehaves as an ideal conductor, the boundary condition is
additional features due to the possible change of the topologymore complicated since the potential drop occurs on both

IIl. THEORETICAL APPROACH
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sides of the interface and the boundary is surely not an equinterface the dielectric displacement at the boundary is not
potential line. Furthermore, it is also not valid to use twosimply given by the local surface charge density, but it
independent Neumann boundary conditions for each sideontains additional contributions from all the other points on
since the interface between two immiscible solutions is electhe surface. In order to see the first nonvanishing influence
trically transparent. Only in the case of totally absorbing in-on quantities that involve an integration over the lateral di-
terfaces, which screen side 1 from side 2, would this be thenension, we have to go to the second order in the height
appropriate boundary condition. function because the first-order terms vanish due to the con-
It is important to emphasize that the quantity that can bedition of Eq.(4). The constantr; and the nonlocal response
independently controlled in an experiment is the total potenfunctionsa; and 8; have to be determined self-consistently.
tial dropAV across the interface. This means that one has né is convenient to solve Eq3) together with the boundary
direct influence on the interface position itself. So the approeonditions(7) and (9) separately fory<<h(x) andy>h(x)
priate boundary condition for an overall neutral ITIES isand require the continuity of the potential at the interface:

simply
Vi(x,y=h(x))=V,(x,y=h(x)). (11)

With Eq. (3) and Egs.(7)—(11) the problem is now com-
However, from electrostatics it is known that the dielectricpletely defined and the response functieansind 8 can be
displacemenD at the boundary between to different dielec- determined.
tric media has to fulfill the conditioh17]

N(X)[D1(X,y=h(x))=Da(x,y=h(x))]=0c(x), (8) . .

In order to solve the linearized Poisson-Boltzmann equa-
where o(x) is the surface charge density on the interfacetion [Eq.(3)] subject to the boundary conditiofig) and(10)
The application of this condition to our problem requireswe assume thdi(x) is a small quantity. In this case we can
some further discussion. The first important point to note igise standard perturbative techniques for solving differential
that o(x) is really asingular quantity located ay=h(x). equations with complicated boundar{d®,15. There is also
Since in this work we will restrict ourselves to the casean approach based on the multiple scattering techriig0le
where we have no nonelectrostatic adsorption of ionic spewhich gives a formally exact solution of the linearized
cies at the interface, the surface charge densfty) is zero ~ Poisson-Boltzmann equation. However, since in this work
and the normal component of the dielectric displacement igve introduce a boundary condition, which itself is written as

V(X,—®)=cr,=AV, V(X,2)=c;=0. (7)

B. Perturbative approach

continuous at the interface: a perturbative expansion m(x) [see Eq(10)], the standard
perturbative technique for the solution of E@) is more
n(x)D;(X,y=h(x))=n(x)Dy(x,y=h(x)). 9 convenient. In the following we will describe the solution for

side 1 and drop the corresponding index.
Second, it is important to realize that the continuity of the |f we introduce a parameter of smallnesswe can write
dielectric displacement is onlylacal condition, as indicated a perturbative expansion of the dielectric displacement at the
by the x dependence. Indeed, for a liquid-liquid interface, interface
which on the Gouy-Chapman level is treated as point ions in

a dielectric continuum, the charges can move freely and re- D(x,Ah(x))=D(x,0) +Nh(x)Dy(x,0)
spond to the modulation of the surface in such a way that the 1
total free energy of the interphase is minimized. It would be + E)\zh(x)in(xlo)jL... 1 (12)

a gross oversimplification if we assume a constant dielectric

displacement at the interface. This means that at the interface L . L
we can fix neither the dielectric displacement or the sun‘acg"here the subscript indicates the differentiation. We have to

: : ite also an expansion of the normal vector since it depends
charge nor the potential. The behaviomgk) D(x,h(x)) and wri o . ;
V(x,h(x)) is completely determined by the potential drop on the derivative of the height function
AV imposed across the overall interface and the properties of

the interface itself. Since the dependence of the dielectric n(x)= ~ A0 ;
displacement is due to the deviation of the interface from a 1 \/1+)\2h)2((x)
planar geometry, we can write it in the general form Ah.(x) 1
- X
= ] (1— E)\Zhi(x)Jr--- . (13

n(x)Di(x,h(x))=cri+f dx’' aj(x—x")h(x")
Furthermore, we assume that the potential itself has the fol-
+f dx’f X' B.(x—x' X' —X")h(x") lowing expansion in:
V(x,y) =VO0y) + AV (x,y) + NV (x,y) +---
Xh(x")+---. (10 (19

This equation describes the dielectric displacement at th8ubstituting Eqs(12) and(13) into Eq. (10), usingD(X,y)
boundary as aonlinearandnonlocalresponse of the surface = —¢eVV(X,y), and collecting terms with the same order of
charge distribution to the perturbatidv(x). This can be in- A, we obtain the hierarchy of boundary conditions for
terpreted in the following way: In the case of a modulatedV,(x,0),
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_ v _7 /(1) _ - P
VY (x,00= - (159 Vit(q,00= ) [oiki = a;(q)]h(q), (22b
i%i,q
(D) _ (0) _ (0) R k . ~
Vy (X,O) h(x)vyy(xro) hX(X)VX (X'O) V|(2)(q,o): + eliA f :_,n- h(q_k)h(k)
i%iqg
+f dx’ a(x—x")h(x'), (15b) 1 (q—kk/ 2
X —O'iKi2 (Zrik_1)+ 7 <—_1)}
1 2 ’ Ki ri'k
—V2(x,0)=h(x)VY(x,0) + —h2(x)V{%(x,0) A —kl
y vy 2! Y * a;j(K)| kit (qK, k) +,3i(q,k)], (229

—h, ()i (%,0)~ h,()h(X) Vi (x,0)
where the upper sign af refers toi=1. In order to stop this

+ Eh)z((x)ngf dx'f dx’B, expansion at the second-order term the conditbifx) <1
2 € must hold. Furthermore, the height functibifx) must be
X (x=x' X' —x")h(x")h(x"). (150 infinitely differentiable since otherwise the series does not

convergg15]. We see that the inverse Debye length is modi-

This hierarchy looks much more complicated than &), fi_ed by the wave vector of the modulation. Sineg= « the
but now we have recast the boundary condition for a comhigher-order terms decay faster than the zeroth order and far

plicated surface into a series of boundary conditions for 4rom the interface we recover the usual Gouy-Chapman re-
simple planar geometry. If we now substitute Ed) into  SUlt

Eqg. (3), we see that each order ®f(x,y) satisfies a linear

Poisson-Boltzmann equation C. Determination of the response functionse and g

Having the general form of the solution for the potential,
the remaining task is now to calculate the constantand
. .the response functiong andg; . This can easily be done by
The problem can row be Soted arder by aderand s 5 oS G s or o it dsplacemet
transform of the yotential y 9 and the potentials on sides 1 and 2. From @4), which has
P also to be expanded like E¢L0), and Eq.(9) we get after

some tedious algebra for each ordenima set of two equa-

(Oyxt dyy— kHVV(x,y)=0 Vn. (16)

V(q,y)= fw dx e™V(x,y). (17)  tions: for\° terms
1 -1 g1 0
Equation(16) now has the form Ve, Ueyry) | 0a) LAV 23
(dyy—kg)V™V(q,y)=0 ¥n, (18  and the solution
where 01=0,=0=CgcAV, (24
2 .
Kq=KTq, Tg=\/1+ %2. a9 M
p— 1 1 _1.
The formal solution is then Coc= €1K1 - €2k @9
VM(q,y)=V"(q,00e” " (200 and forA® terms
and each order 0¢("(q,0) can be determined from the Fou- 1 -1 a1(q) :( 0 ) (26)
rier transformation of Eq(15). The final result up to the lerkiq 1lezrag a,(q) A(g) )’
second order in the height function can be written for each
side as with
~ _ /(n) i (0] 1 01 1
Vita,y)=2 ViV(a.00exd (- D'xi vyl (2D) A(Q)=—|-——1]- =2 —-1], 27)
n € \I2q € \lNg
with and the solution
U0(q0) =+ 2ms(a)+c; with 6;=0, c,=AV a1(Q) = () = () =CocoAd), (29

(229 with
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P (29 follow the modulation of the interface. This is also true for
1%a - F2R2a the charge density since in the linear regime the charge den-
sity is proportional to the potential.
In the limit e,—o, k,—%, which corresponds to an
( 1 -1 ) B1(q,k) ( 0 ) ideal metal-solution interface, the first- and the second-order
Ba(a.k)) 1B(@.k))’

1 1 \°1 Due to the second-order contribution, the potential does not
Cecg™ ;

and for\? terms

(300  contributions go to zero and we obtain an equipotential line

leik1q llezkag at the interface boundary

with V(x,y=h(x))=AV. (39
1oiky,, 1oky The constanto and the response functions have then the
B(qyk)zi € fl(qvk)+§ 5 f7(a,k) form
k), aolk) o=euadV, 39
+ f1(9,k) — f3(q.k) (3D A
a(q):_Klo(l_rl,q)v (40
and 1
L (- 10k| 2 B(a.k) =5 0kir (0.0 + a(k) rar1gfi(a.k). (4D
frak=1-—1@ri=D+—>2—| — 1|,
iq Ki ik If we insert Eqs(39)—(41) into Eq.(21) we obtain the same
(32 expression for the potential as Goldstehal. [15], who
1 Ok started from an equipotential line at the surface as the bound-
Q) =1— —{ 1+ 9=k (33 ary condition. So our approach is a general result for the
Y Fig ; Kizri,k ’ potential drop across an interface between two conducting

materials, where the pure material on both sides can be de-

and the solution scribed by a dielectric constant. It is therefore also applicable

R R R to the interface between the conductor and semiconductor,
B1(9,k)=B2(9,k)=B(q,k)=Cgc,B(q,k). (34  the semiconductor and electrolyte, or two semiconductors.

Inserting Eqs.(24), (28), and(34) into Eq (21) and per- 1l. CAPACITY AND ROUGHNESS FUNCTION
forming the back transformation in real space, the two-
dimensional potential profile is completely determined in One easily accessible experimental quantity is the differ-
terms of the solution parametersandx; , the potential drop ~ential capacityC of an ITIES, which is defined d21]
AV across the interface, and the height functigm).
A quantity of particular interest is the lateral potential C= dQ (42)

distribution at the interface positioy=h(x), which we can d(Av)’

now express through the potential on side 1: ) , ) ,
Here Q is the total interfacial excess charge on one side of

9 Coc A A the interface. The total charge on each side is given by
V(g,h(x))=AvV_—= [2776(q)+ h(a)F®(a)
1%1

e h(x)
N Q- [ x| dypxy. Q- [ ax|"ay paixy)
+ f Zﬁ(q—k)ﬁw)ﬁ@kq,k)], (35) (43
Since in the linearized Poisson-Boltzmann approximation the

charge density distribution is proportional to the potential,
p(X,y)=—ex?V(x,y) [if V(x,=%)=0], we can calculate

with

F(q)= —F4(0,q) k1 — Coc| f2(0.0) _ f1(0.9) , the_ charge very easily. The result up to second order in the
iq € €1 height function is
(36)
=Q,=Q=0A Jdk”Okﬁ k)h(k
c@ a2 g Ceca f‘{(q,k)+f§(q.k>) ~Qi=Qe=Q=0Aeart | 5 AOKN(—KIN(K),
(q,K)=— 5| kaf1(q,k) g | e = (44)
f3(0k) f&Ok) where we have chosen the charge on side 2 to be positive and
—Cqc k( - ) used the expression for the area of a weakly modulated sur-
’ €2 €1 face:
a Cocq( f2(a,k)  fi(a,k) 1 dk
x| rafi(@k)+ Mg ( & e | Area.zf dx(1+§h)2((x)):fdx+f Zkzﬁ(—k)ﬁ(k).

(37 (45)
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Of course the charge can also be obtained directly by intewhich is exactly the result obtained by Daikhét al. [16],
grating Eq.(10) over the real surface. It is important to note who started from an equipotential line as boundary condi-
that 3(0k) depends orx(k) and o. Therefore, even if the tion. For all other cases, especially for semiconductor-
terms linear inh(x) are averaged out by integration, they €lectrolyte interfaces where the charge carrier concentration
have an influence on the second-order terms and must K both sides is low, one should apply £49) instead of Eqg.
taken into account. On the other hand, if we take into ac{50). ) ) _ _
count only the nonlocal linear response of the dielectric dis- Besides the information about the surface via the height-
placement at the surface, we obtain the trivial result Dat height correlation functiom(k), the functionR(k;,€;) has
=0Aq. This shows that it is crucial to go beyond the linear another important consequence. The Gouy-Chapman capac-

response of the dielectric displacement. ity for liquid-liquid interfaces can simply be written as a
If we substitute Eq(24) into Eq. (44), we get the expres- series combination of the two independent diffuse layer ca-
sion for the capacity pacities on sides 1 and[8ee Eq(25)]. This is no longer true
B if the interface deviates from a planar geometry since the
C=ACgscR(k;,€), (46)  response functio(0k) introduces a coupling between the

] ) two diffuse layer capacities. This shows that even on the

!vhereA is the corresponding area of a flat surface andnean field level we have a coupling between the two diffuse
R(k;,€) is given by layers, which vanishes fdr=0. In other words, the absence

of the coupling in the Gouy-Chapman theory is due to the

~ Areal h? k. - symmetry of the interface, but generally this symmetry is
Rki €)= A CgcAV f Z'B(O’k)g(k)' 47 broken and the two diffuse layers are not independent of
each other.
Here we have also defined the two-point height-height cor- For a better understanding of this coupling we consider
relation function of the interface the special case ok;=k,=«. In this case the roughness
function decouples into two parts, one of which is indepen-
. h(—k)h(k) dent of the dielectric constants
g(k)= A (48)

- dk . 1
. . . . R(K,€1'52)21+K2h2f —g(k)(l——)
whereh is the height of the interface modulatitrix). Ac- 2m Ik
cording to Daikhiret al.[16], the functionR(x; , ) is called
the roughness functiorbecause it can be calculated from x{1+(rk— 1)

experimental data of the rati®/ACg¢ in order to get infor-

mation about. thF roughness of the interface. Since the "S\e can simplify this expression further if we make another

sponse function3(0k) itself depends also 0€gcAV and  approximation. Assume that the height function has a small-

contains a contribution +A.,/A we can write the rough-  est correlation length,,,, and that the Debye length is much

ness function more conveniently as smaller than i, i.e., kl,,>1. In this limit we can expand
the quantityr,, which yields

€1~ €2
El+ €)

2
] . (51

. , dk .
R(ki,€)=1+h"Cgc Eg(k)

~ Areal 3 <H2> 1 <H2> €17 € 2
1 1 R(Klel,EZ)— A _g K2 +Z K2 El+62
ﬂ(1——)+2(1——)+c (52)
€1 Fik/ €2 Mok eek
1 1 1 1172 with the mean squared curvatufid?) of the interface
x| = 1——)——(1——” . (49
€2 Fox/ €1 ik

dk R 1
<H2>=f Z—k“hzg(k):ﬂdx R(x). (53
This shows that the capacity for ITIES with a modulated m
interfice is always greater than the Gouy-Chapman capacity Equation(52) can be interpreted in the following way:
since R(k;,€)=1. The roughness function determines theinstead of representing the Gouy-Chapman capacity as a se-
deviation of the capacity from the Gouy-Chapman predictionries combination of two plate capacitors, in our case it is
in terms of the height-height correlation function and de-more convenient to represent it as only one plate capacitor
scribes the interplay between the different length scales afiith two different dielectric media in between. This type of
the system. This is a quite general result and it can be applieghpacitor can also be described by EB5). The average
also to semiconductor-metal, semiconductor-electrolyte, anghickness of one sort of dielectric is given byxl/and the
metal-electrolyte interfaces. The roughness function for amoundary between is just described by the height function
ideal metal-solution interface, for example, can be easily obh(x). Then the terms independent efin Eq. (52) simply
tained from EQq.(49) by performing the limite;—%, x,  take into account the deviation of the two capacitor plates
—o. In this case the roughness function reduces to from a planar geometry. The farther the plates are from the
dk modulated interface, the flatter they are because the diffuse
= _ 202 | YR~ _ layer “smears” out the modulation of the interface; hence
R(ky,€)=1+kih f 2@ 9(k)(re=1), (50 the sum of these terms becomes smaller. In addition there is
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a coupling due to the difference of the dielectric media. This 1.6
coupling increases with increasing ratio OH?2)/«?
A3g/(R?), whereR is the curvature radius. For a small cur-
vature radius the electric field in the diffuse double layer,
which is a function of both dielectric constants, is very inho-
mogeneous with respect to the lateral dimension. If, how-
ever, the Debye length is smaller than the curvature radius,
this inhomogeneity effect is much lower since the electric
field is already considerable screened. It vanishes also for
equal dielectric constants because then this effect is equal but
opposite on both sides of the interface. In the general case of
K17 Ko, both these effects are coupled together and the be-
havior is too complicated to represent in a simple picture.
Before we calculate the roughness function for a specific
example, it is iII_ustrative .to investigate two extreme. limiting FIG. 1. Roughness function for a periodic interfdés, (57)]
cases: If the height function has a smallest correlation length..,, h=6A, A\=24 A, ¢,=80, and e,=10. The geometrical
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I'min, then the quantity , has the limit

(54

roughnes® /A is 1.62.

lim ro=1.

Kop—®

However, as discussed above, if the concentration on one
side is zero, the roughness function is one. Furthermore, it is

The roughness functiofEq. (49)] is now completely deter- Seen that the roughness function is close to the limiting value
mined by the Debye length of side 1 and it is the same as folar before xkh>1. Hence the approximation made for the
the metal-solution interfackEq. (50)]. This is of course ex- Perturbative calculation of the potential is valid over the
pected since at this level of description, the screening on sid@hole interesting range. The roughness function is also not
2 is now perfect, like for an ideal metal. If we further assumeSymmetric with respect to the line;h= «,h. This is due to
that x4l ,;;>1, we can develop the quantity;, and the the difference of the dielectric constants; the greater this dif-
roughness function can be approximated by ' ference, the greater the asymmetry. Another interesting ef-
fect is the following: If the inverse Debye length on the side
Aea 1 (H?) with the higher dielectric constant is small and fixée,

A 8 K% ' smal)), the roughness function is nonmonotonic with respect
to k,. Unfortunately, in experimental investigations of
In this limit the roughness function is determined by the ratiol TIES the concentrations of the two electrolytes are usually
of the curvature and the inverse Debye length. Equationshanged symmetrically; therefore, this type of behavior can-
(54) and (55) show that the geometrical roughness of thenot be observed.
interface is accessible by capacity measurements only in the In Fig. 2 we compare the roughness function for various
limit of zero Debye length orboth sides, since then both differences of the two dielectric constants aagd= x,. This
diffuse layers follow exactly the modulation of the interface. figure shows that the roughness, as seen in the capacity data,
On the other hand, if onlgne Debye length goes to infinity, is the more pronounced the greater the difference of the di-
one recovers the Gouy-Chapman capacity. electric constants. In the smalllimit the roughness function

In order to investigate the behavior of the roughness funcdecays more smoothly to one, when the difference of the
tion over the complete range of the Debye lengths on botldielectric constants is small. Note that the upper curve cor-
sides, we assume that the modulation functigr) can be responds also to the roughness function of a metal-solution
described by a simple deterministic function interface[Eqg. (50)].

R(ky)=

(55

27 N hA(Sm 1t Om —1) 6f - v T T
h(x)=h cos=—x, h(k)=——2 """ (5
N 2
where k=27m/A and m=0,£1,£2,... . The integral PR
Jdk/i27r in Eq. (49) can then be replaced by the summation L4F g
(1/A)Z and the roughness function is simply given by z S . <<
&z 4 2
2 1 Ko 1 1 SoSS e =80,8,=10
R( Kj , € ) 1+ = h CGC 1- E + 6_2 1— E 12k ,/, ,lz .......... . — 80, 82:30 i
1 1 1 1172 S e g, =80,¢,=80
+C —|1-—]=— 1——)”.
Gep 62( r2,p) 61( Mp
1.0 Mid 1 1 1 1 1 1 1 1 L
(57) 0 1 2 3 4 5

A three-dimensional plot of this function is shown in Fig. kh

1. It can be clearly seen that the roughness function reaches FIG. 2. Roughness function for a periodic interfd€ay. (57)]
the geometrical roughness only for the casé= k,h— . for different values ofe; ande,, with h=5A andA=20 A.
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2ok —IA=I15A' ' ' ' ' ' — modulusk;. The;t_a membrant_es are usually immersed into
______ A=20 A electrolytes and it is therefore important to know the electro-
Ty — A=304 1 static cpntnbunon to the bending mo.dulus. SM@has t.he
N n=50 A dimensions of energy, the electrostatic contribution to it must
have the formf e(AV)? « or f o3/ ex® for a constant surface
- T charge. Herd is a dimensionless constant that is determined
& e by the boundary condition. The exact value and the sigh of
L4} . are important sincé&, enters, for example, exponentially the
] persistence lengtf23], which is a measure for the distance
I i over which the normals of the surface become decorrelated,
A and it can be measured with great precisi@d]. Phenom-
enologically, the total free energy of a two-dimensional
S modulated surface can be written[d8,18

kh

= + —Cg)2+k
FIG. 3. Roughness function for a periodic interfd&. (57)] Fsurt '}’Of ds kcf dS(H=Co) kf dS K (6

for different values of\, with h=5 A, ¢;=80, ande,=10. 5
wherec, is the spontaneous curvature akdhe Gaussian
Figure 3 finally compares the roughness function for dif-bending modulus. The mean curvatifeand the Gaussian
ferent parameters df and\. For a large value oh/\ the  curvatureK are given by
capacity of a modulated ITIES can be considerable higher

than the result predicted by the Gouy-Chapman theory. Vh(x,y)
These values are in agreement with experimental findings H=div |
V1+[Vh(xy)]

[5]. In[5] the higher capacity was explained by the existence
of a mixed solvent region, including the ions, which results
in an overlapping of the two space charge regions. Our re- ~ hhyy— hfy

sults are not in contradiction with this. Indeed, we can argue - 2
N - : V1+[Vh(x,y)]
in a similar way, because an averaging over the lateral direc-
tion _of th_e ionic den_sny prof|le§ appears also_as an “over— 4 the metridS is
lapping” if one considers the midplane of the interfaceyat
=0
dxdy
dS= ————. (62
IV. FREE ENERGY AND BENDING MODULUS VI+[Vh(xy)]

The externally controlled variable for an ideally polariz- For a one-dimensional and only weakly modulated surface
able ITIES is the total potential drapV across the interface. with zero spontaneous curvature this expression simplifies to
Therefore, we have to calculate the free energy in terms of

AV, which is most easily done by starting from the Lipp- 1, 1 5
mann equatioh21] Fsur= ')’Of dx| 1+ 5 () |+ Ekcf dxh,(x). (63)
dy _Q
I(AV) - Accal (58) Using again_the_ Ii_mitKImin>1 and assuming equal Debyg
H1k2 lengths for simplicity, we can expand the roughness function

Integration on both sides leads to the expression and write the free energiEq. (59)] in this limit as:

A F=[70—— f1c2 K(AV)zU dx| 1+ 1h§(><)
Areal Y= v0)=AF=— . Q(AV")d(AV'). (59 2\ e te 2
) ) . ) 1 €1€H (AV)Z €17 €y 2 >
Here y, is the surface tension in the absence of a potential ~ + 75 ate x |0 lere dx R (X).

drop andAF is the change in free energy due to the forma-
tion of the diffuse double layers. Expressi@gthrough the (64)

ity f Eq(46) simply yiel
capacity from Eq(46) simply yields If we compare this expression for the free energy with the

AFE 1 - coefficients of the expression in E¢63), we can identify

AT ECGC(AV)ZR(Ki J€i). (600 —ee,6(AV)?/2(e;+ €,) as the electrostatic contribution to
the surface tension. The electrostatic contribution to the

This shows that also the free energy of a modulated ITIES i®ending modulus is then given by

determined by the behavior of the roughness function.

As mentioned in the Introduction, liquid-liquid interfaces K (AV)= 1
can serve as a model for biological membranes, which often ¢ 8
have a very low surface tension. The modulation of the
membranes is then mostly governed by the elastic bendinfn the limit €,> €, this expression reduces to

(AV)Z 2

K

€1€2 €17 €

El+ €o

. (69

El+ €o
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1 €,(AV)? Note that this contribution is asymmetrical &V, o, and
ke(AV)=g——, (66)  €,—€,. Furthermore, it vanishes faf, = e, . If, for example,

AVoy>0 ande;<e,, then the contribution to the bending
where AV is now the equipotential at the surfafeee Eq. Modulus is negative and the interface is destabilized. Due to
(38)]. This is just the result obtained previously by severalth® second term in E¢69) we obtain a potential of zero
authors using different approachis,22,25,26 Note that charge ifQ=0. The zeroth order of this potential of zero
we obtain this result also in the limit,> «; . In both cases Charge is jusiV{.=oo/ex. Since the terms proportional
the electrostatic contribution to the bending modulus is conto the bending modulus give already a second-order contri-
trolled by that side, in which most of the potential drop oc-bution to the free energy, we can calculate the bending
curs, since on the other side the electric field is extremelynodulus forAV:AVS)Z)C and obtain in the special case of
shielded. If instead the potential drop occurs on both sides;=¢€,

the full equation(65) should be applied. In the special case 3 US
of €;=¢, we obtain ke(og) = 16 e (73
3 €(AV)? _ _ _ o
kc(AV)=F3 Pt (67)  This result is three times greater than that obtained in

[25,26. So the response of the dielectric displacement at the

This result differs from that obtained by other authorsimerface to the curvature leads to a stabilization of the flat

[25,26, who considered the curvature energy of a Chargedpterface compargd to the case with a constant dielectric dis-
membrane with electrolytes on both sides. They obtained Blacement at the interface.
value of kC(VO)zeV§/4K for a perfectly conducting mem-
brane with an equipotential lin€, at the boundary. In our
caseAV is the total potential drop across the interface and In this work we have developed an extension to the linear
the potential at the interface is not constgsge Eq(35)]. Gouy-Chapman theory, which takes into account a modula-
Often the membrane carries a constant surface charge dtien of the interface position. Special emphasis was given to
to charged groups in the molecules that constitute the menthe boundary condition for a liquid-liquid interface. The ap-
brane. The electrolyte contains then also the counterions gfropriate boundary condition fixes neither the potential nor
these charged groups. We can model this effect if we assuntibe surface charge at the interface position. Instead, the di-
that the total charge on side 1 consists of a constant singula&lectric displacement at the boundary was allowed to vary in
partoy and the diffuse part. In this case we have to write thethe lateral direction. This variation is due to a nonlocal and

V. CONCLUSION

boundary condition Eq9) as nonlinear response of the dielectric displacement to the per-
turbation from a flat interface geometry.
N(X)[D1(x,y=h(x))—Dy(x,y=h(x))]=0p. (68) Within this model it was shown that the capacity of an

_ . _interface between two immiscible electrolyte solutions can
If we perform the same type of calculation as described irpe significantly higher than the value predicted by the Gouy-
Sec. Il, we obtain in the special casewf= «; for the total  Chapman theory. The deviation depends on the interplay be-

chargeQ the expression tween the Debye lengths of the two solutions and the height
Q _ and characteristic length of the interface modulation. This
KZAVCGCR(K,El,fz) interplay is described by a roughness function, which gov-

erns also the free energy of the system. Since the roughness
Areal function is just the ratio of the “real” capacity to the Gouy-
—00Ceca (el—KﬁLRgo(K,El,fz)), (69 Chapman capacity, it can be measured very easily. If the
roughness function is known for various concentrations, one
can get information about the height-height correlation func-
tion of the interface.

Furthermore, we calculated the electrostatic contribution
to the elastic bending modulus, which determines the curva-
ture fluctuations of the interface. Our result is different from

(70) previous ones since we have employed a different boundary
condition.

The model we used in this work to describe the liquid-

If we now substitute Eq(69) into the Lippmann equation liquid interface between to immiscible electrolyte solutions
and proceed in the same way as before, we obtain an adds of course idealized. Thus it neglects the effect of specific

with
o k.
Ry, (ki €)=«h f 5 9(K)(1=ry)

1

Mk

X

1 €1~ €
El+ €) €1+ €)

tional contribution to the bending modulus ion adsorption or interfacial ion association, but from experi-
mental investigations of liquid-liquid interfaces it is well
kcsz(AV)+kZ°(Av,oo), (77 known that theses effects play an important role. In future
work we will incorporate these effects into our model.
with
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