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Influence of a modulated surface on the properties of liquid-liquid interfaces

O. Pecina and J. P. Badiali
Laboratoire Structure et Re´activité des Syste`mes Interfaciaux, Universite´ Pierre et Marie Curie, 4 Place Jussieu,

F-75230 Paris Cedex 05, France
~Received 12 May 1998!

We present an extension to the linear Gouy-Chapman theory for an interface between two immiscible
electrolytes~ITIES! with an interface that deviates from a planar geometry. This theory takes into account the
proper boundary condition for an ITIES, i.e., neither the potential nor the surface charge is fixed at the
boundary between the electrolytes. Instead, the dielectric displacement at the interface position is allowed to
respond to the perturbation from a flat surface. The linear and quadratic response functions are calculated
self-consistently. We derive a roughness function in terms of a height-height correlation function of the
surface, which determines the behavior of the capacity and the free energy of a modulated ITIES. Furthermore,
we calculate the appropriate electrostatic contribution to the elastic bending modulus of the interface.
@S1063-651X~98!10410-5#
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I. INTRODUCTION

In recent years liquid-liquid interfaces have received gr
attention because they play an important role in biologic
chemical, and physical systems. For instance, in biology t
can serve as a model for membranes separating two ele
lytes and in chemistry they are important for reactions
volving ion transfer across an interface. Since in many
spects the interface between two immiscible electrol
solutions ~ITIES! shows an analogy to the metal-solutio
interface, they have also attracted the interest of elec
chemists.

There have been a considerable number of experime
investigations using classical electrochemical techniq
such as voltammetry and electrochemical impedance@1#. Re-
cently, also more modern techniques such as second
monic generation@2# have been applied to these system
However, in spite of these efforts, and in contrast to me
solution interfaces, only little is known about the structure
liquid-liquid interfaces. One point of view is that the solven
form a sharp boundary and a compact layer of solvent m
ecules, which the ions cannot penetrate@3#. The other view
claims the existence of a mixed layer of the solutions@4#. On
the other hand, there are strong hints that the interfa
structure of liquid-liquid interfaces is different from meta
solution interfaces, in the absence of specific adsorption
the measured capacity at low electrolyte concentration
found to be higher than the Gouy-Chapman capacity@1,5#,
while at metal electrodes it is lower.

In contrast with experimental investigations, there ha
been only relatively few theoretical investigations of liqui
liquid interfaces and they also provide no unique picture
the interfacial structure. Computer simulations of these s
tems@6,7# show that there is a sharp interface at which
two liquids do not mix, whereas recent calculations based
the density functional formalism predict a mixed solve
layer @8#. This is also confirmed within a simple lattice ga
model @9#. Including ions in this approach, it was also po
sible to explain the higher capacity compared to the Go
Chapman capacity by the existence of a mixed bound
PRE 581063-651X/98/58~5!/6041~10!/$15.00
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layer, whose thickness extends over several solvent di
eters @5#. Of course, the extent of this boundary layer d
pends on the solubility of one solvent in the other. Hence
different results need not be contradictory, but are due to
solvent parameters used in the calculations.

So far the theoretical investigations of ITIES have be
restricted to a planar geometry of the interface. In this wo
we will follow another line and investigate the effect o
modulated interface geometries. The interface between
liquid phases is not planar, but roughened due to ther
fluctuations of the interface position. The size of this effec
mainly determined by the surface tension of the system. M
lecular dynamics simulations of an interface between wa
and 1,2 DCE@6# have shown that the structure of the inte
face can be described within the theory of capillary wav
@10,11#. If one neglects the effects of gravitation, the me
square height fluctuation of the surface in Fourier space
given by

^ĥ2~q!&5
kBT

gq2 , ~1!

whereĥ(q) is the Fourier transform of the function descri
ing the surface modulation,q is the wave vector, andg is the
surface tension. Since the surface tension for liquid-liq
interfaces is much lower than for metal-solution interfac
~e.g., 30 dyn/cm for the 1,2 DCE–water interface@12# and
415 dyn/cm for the Hg-water interface@13#!, the thermal
excitation of these fluctuations can be quite important. Fr
statistical mechanics of membranes@13# it is also well
known that there is another kind of fluctuation that is go
erned by the elastic bending moduluskc of the membrane if
the surface tension is small. For this type of fluctuation
mean height fluctuation is given by

^ĥ2~q!&5
kBT

kcq
4 . ~2!

For long wavelengths thesecurvature fluctuationsare lower
in energy (;q4) than the surface-tension fluctuations
6041 © 1998 The American Physical Society
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(;q2) and they are therefore expected to be even more
portant for the modulation of the surface.

This short discussion shows that for ITIES it is natural
consider an interface that is perturbed from a flat geome
In this work we will assume that the interface position can
described by a given height functionh(x,y), which is
mainly determined by the properties of the interface betw
the two pure solvents. Furthermore, we will focus only on
ideally polarizable interface and neglect the effects of s
cific adsorption or ion association. Having this kind of sy
tem in mind, we will derive an extension to the linear Gou
Chapman theory, which takes into account the modula
geometry of the interface. We are aware of the much m
elaborate theories of electric double layers@14#, which go far
beyond the mean-field level of the Gouy-Chapman theo
taking into account many microscopic details of the syste
However, all these theories deal with highly symmetric g
ometries such as planes, cylinders, and spheres. Therefo
should be of basic interest to investigate the effect of mo
lated surfaces on the interfacial properties within a sim
theory in order to understand some main physical aspect
least on a qualitative level. By main physical aspects
mean the interplay between the two Debye lengths of
system and the two new length scales introduced by the
face modulation, namely, the height of the modulation a
its characteristic length, e.g., the wavelength in the case
periodic surface. Moreover, the Gouy-Chapman theory is
far the most used theory for the classification of experime
results and the linearized version should give a reason
description for low potential drops across the interface.

The approach we used in this work is similar to that
Goldsteinet al. @15#, who considered an interface between
modulated surface on one side and an electrolyte solutio
the other. The same technique was later used by Daik
et al. @16# in order to discuss the capacity at a rough me
solution interface. In the case of ITIES, however, the bou
ary conditions used by Goldsteinet al. @15# are inappropri-
ate, and one has to employ a much more complicated
This will be developed in Sec. II, where we describe t
theoretical method for the solution of the linear Poisso
Boltzmann equation and calculate the two-dimensional
tential profile. In Sec. III we calculate the capacity for t
modulated liquid-liquid interface and compare it to t
Gouy-Chapman result for the flat interface. We also give
explicit example for a simple deterministic height functio
and discuss the results for different parameters. In Sec
we investigate the influence of the curvature on the free
ergy of the system and derive the appropriate expression
the electrostatic contribution to the elastic bending modu
Finally, we give a short summary and an outlook in Sec.

II. THEORETICAL APPROACH

As already mentioned in the Introduction, we have to d
with a boundary value problem for a complicated geome
In order to simplify the calculations, we consider only a tw
dimensional system, that is, the surface is modulated in o
one spatial direction and is translationally invariant along
orthogonal direction in the midplane of the surface. A tw
dimensional modulation of the surface can introduce so
additional features due to the possible change of the topo
-
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of the surface. The investigation of these effects may be
topic of future work, but we think that the main aspects c
be understood also from a more simple one-dimensio
model of the surface modulation.

A. Boundary condition

The mathematical problem in the spirit of the Gou
Chapman theory can be stated as follows. We have to s
the two-dimensional linearized Poisson-Boltzmann equat

~]xx1]yy2k i
2!V~x,y!5ci , ~3!

whereci is a constant, which is usually set to zero on o
side. For a 1-1 binary electrolyte the inverse Debye lengt
k i5lDB

215ArBie
2/e ikBT, whererBi is the total ionic density

in the bulk of the solutioni , e i5esolv,ie0 is the solvent di-
electric constant, andi 51 for y.h(x) and i 52 for y
,h(x). The potentialV(x,y) is the total potential of the
system, but image effects due to the different dielectric c
stants are not contained. The height functionh(x) describes
the modulation of the boundary between the two solutio
and is assumed to be known. Furthermore, we assume t

E
2`

1`

h~x!50. ~4!

This can always be achieved by a suitable choice of
midplane position. If we consider the flat surface as the r
erence system, that is, the spontaneous curvature of the
face is zero, this assumption entails no loss of generality

In order to solve this second-order partial different
equation we need two boundary conditions. Consider first
case of a metal-solution interface, where the metal on sid
@y,h(x)# is assumed to behave ideally. Then Eq.~3! has to
be solved only for the half spacey.h(x) with the Dirichlet
boundary conditions

V„x,y5h~x!…5V0[const, V~x,`!5c1[0. ~5!

This problem was solved by Goldsteinet al. @15#. They also
solved the problem for a Neumann boundary condition at
interface:

@2n~x!“V~x,y!#y5h~x!5s0[const, V~x,`!5c1[0,
~6!

wheren(x) is the normal vector pointing from the interfac
towards side 1. Both cases correspond to the situation w
the reference electrode far from the interface is a flat eq
potential line, i.e., it does not follow the modulation of th
interface. This is the usual electrochemical setup for mea
ing or imposing a potential drop across the interface. It
well known, but we stress it here again that for a flat surfa
both types of boundary conditions yield the same poten
profile ~and also for other highly symmetric geometries su
as spheres and cylinders!. However, this is not the case fo
an arbitrary surface and we will see that this leads to imp
tant differences in the electrical and thermodynamic prop
ties of modulated double layers.

In the case of an ITIES, where neither of the two sid
behaves as an ideal conductor, the boundary conditio
more complicated since the potential drop occurs on b
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PRE 58 6043INFLUENCE OF A MODULATED SURFACE ON THE . . .
sides of the interface and the boundary is surely not an e
potential line. Furthermore, it is also not valid to use tw
independent Neumann boundary conditions for each
since the interface between two immiscible solutions is e
trically transparent. Only in the case of totally absorbing
terfaces, which screen side 1 from side 2, would this be
appropriate boundary condition.

It is important to emphasize that the quantity that can
independently controlled in an experiment is the total pot
tial dropDV across the interface. This means that one has
direct influence on the interface position itself. So the app
priate boundary condition for an overall neutral ITIES
simply

V~x,2`!5c2[DV, V~x,`!5c1[0. ~7!

However, from electrostatics it is known that the dielect
displacementD at the boundary between to different diele
tric media has to fulfill the condition@17#

n~x!@D1„x,y5h~x!…2D2„x,y5h~x!…#5s~x!, ~8!

where s(x) is the surface charge density on the interfa
The application of this condition to our problem requir
some further discussion. The first important point to note
that s(x) is really asingular quantity located aty5h(x).
Since in this work we will restrict ourselves to the ca
where we have no nonelectrostatic adsorption of ionic s
cies at the interface, the surface charge densitys(x) is zero
and the normal component of the dielectric displacemen
continuous at the interface:

n~x!D1„x,y5h~x!…5n~x!D2„x,y5h~x!…. ~9!

Second, it is important to realize that the continuity of t
dielectric displacement is only alocal condition, as indicated
by the x dependence. Indeed, for a liquid-liquid interfac
which on the Gouy-Chapman level is treated as point ion
a dielectric continuum, the charges can move freely and
spond to the modulation of the surface in such a way that
total free energy of the interphase is minimized. It would
a gross oversimplification if we assume a constant dielec
displacement at the interface. This means that at the inter
we can fix neither the dielectric displacement or the surf
charge nor the potential. The behavior ofn(x)D„x,h(x)… and
V„x,h(x)… is completely determined by the potential dro
DV imposed across the overall interface and the propertie
the interface itself. Since thex dependence of the dielectri
displacement is due to the deviation of the interface from
planar geometry, we can write it in the general form

n~x!Di„x,h~x!…5s i1E dx8a i~x2x8!h~x8!

1E dx8E dx9b i~x2x8,x82x9!h~x8!

3h~x9!1¯ . ~10!

This equation describes the dielectric displacement at
boundary as anonlinearandnonlocalresponse of the surfac
charge distribution to the perturbationh(x). This can be in-
terpreted in the following way: In the case of a modulat
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interface the dielectric displacement at the boundary is
simply given by the local surface charge densitys i , but it
contains additional contributions from all the other points
the surface. In order to see the first nonvanishing influe
on quantities that involve an integration over the lateral
mension, we have to go to the second order in the he
function because the first-order terms vanish due to the c
dition of Eq. ~4!. The constants i and the nonlocal respons
functionsa i andb i have to be determined self-consistent
It is convenient to solve Eq.~3! together with the boundary
conditions~7! and ~9! separately fory,h(x) and y.h(x)
and require the continuity of the potential at the interface

V1„x,y5h~x!…5V2„x,y5h~x!…. ~11!

With Eq. ~3! and Eqs.~7!–~11! the problem is now com-
pletely defined and the response functionsa and b can be
determined.

B. Perturbative approach

In order to solve the linearized Poisson-Boltzmann eq
tion @Eq. ~3!# subject to the boundary conditions~7! and~10!
we assume thath(x) is a small quantity. In this case we ca
use standard perturbative techniques for solving differen
equations with complicated boundaries@19,15#. There is also
an approach based on the multiple scattering technique@20#,
which gives a formally exact solution of the linearize
Poisson-Boltzmann equation. However, since in this w
we introduce a boundary condition, which itself is written
a perturbative expansion inh(x) @see Eq.~10!#, the standard
perturbative technique for the solution of Eq.~3! is more
convenient. In the following we will describe the solution fo
side 1 and drop the corresponding index.

If we introduce a parameter of smallnessl, we can write
a perturbative expansion of the dielectric displacement at
interface

D„x,lh~x!….D~x,0!1lh~x!Dy~x,0!

1
1

2!
l2h~x!yy

2 D~x,0!1¯ , ~12!

where the subscript indicates the differentiation. We have
write also an expansion of the normal vector since it depe
on the derivative of the height function

n~x!5S 2lhx~x!

1 D 1

A11l2hx
2~x!

.S 2lhx~x!

1 D S 12
1

2
l2hx

2~x!1¯ D . ~13!

Furthermore, we assume that the potential itself has the
lowing expansion inl:

V~x,y!5V~0!~x,y!1lV~1!~x,y!1l2V~2!~x,y!1¯ .
~14!

Substituting Eqs.~12! and ~13! into Eq. ~10!, usingD(x,y)
52e“V(x,y), and collecting terms with the same order
l, we obtain the hierarchy of boundary conditions f
Vy(x,0),



m
r

s
ie

-

c

not
di-

far
re-

al,

y
ent

6044 PRE 58O. PECINA AND J. P. BADIALI
2Vy
~0!~x,0!5

s

e
, ~15a!

2Vy
~1!~x,0!5h~x!Vyy

~0!~x,0!2hx~x!Vx
~0!~x,0!

1E dx8a~x2x8!h~x8!, ~15b!

2Vy
~2!~x,0!5h~x!Vyy

~1!~x,0!1
1

2!
h2~x!Vyyy

~0! ~x,0!

2hx~x!Vx
~1!~x,0!2hx~x!h~x!Vxy

~1!~x,0!

1
1

2
hx

2~x!
s

e
1E dx8E dx9b i

3~x2x8,x82x9!h~x8!h~x9!. ~15c!

This hierarchy looks much more complicated than Eq.~10!,
but now we have recast the boundary condition for a co
plicated surface into a series of boundary conditions fo
simple planar geometry. If we now substitute Eq.~14! into
Eq. ~3!, we see that each order ofV(x,y) satisfies a linear
Poisson-Boltzmann equation

~]xx1]yy2k2!V~n!~x,y!50 ;n. ~16!

The problem can now be solved order by order and thi
most conveniently done by introducing the lateral Four
transform of the potential

V̂~q,y!5E
2`

`

dx eiqxV~x,y!. ~17!

Equation~16! now has the form

~]yy2kq
2!V̂~n!~q,y!50 ;n, ~18!

where

kq5kr q , r q5A11
q2

k2. ~19!

The formal solution is then

V̂~n!~q,y!5V̂~n!~q,0!e2kqy ~20!

and each order ofV̂(n)(q,0) can be determined from the Fou
rier transformation of Eq.~15!. The final result up to the
second order in the height function can be written for ea
side as

V̂i~q,y!5(
n

V̂i
~n!~q,0!exp@~21! ik i ,qy#, ~21!

with

V̂i
~0!~q,0!56

s i

e ik i
2pd~q!1ci with c150, c25DV

~22a!
-
a

is
r

h

V̂i
~1!~q,0!5

1

e ik i ,q
@s ik i6â i~q!#ĥ~q!, ~22b!

V̂i
~2!~q,0!56

1

e ik i ,q
E dk

2p
ĥ~q2k!ĥ~k!

3H 1

2
s ik i

2F ~2r i ,k21!1
~q2k!k

k i
2 S 2

r i ,k
21D G

6â i~k!Fk i ,k1
~q2k!k

k i ,k
G1b̂ i~q,k!J , ~22c!

where the upper sign of6 refers toi 51. In order to stop this
expansion at the second-order term the conditionkh(x)!1
must hold. Furthermore, the height functionh(x) must be
infinitely differentiable since otherwise the series does
converge@15#. We see that the inverse Debye length is mo
fied by the wave vector of the modulation. Sincekq>k the
higher-order terms decay faster than the zeroth order and
from the interface we recover the usual Gouy-Chapman
sult.

C. Determination of the response functionsa and b

Having the general form of the solution for the potenti
the remaining task is now to calculate the constantss i and
the response functionsa i andb i . This can easily be done b
satisfying the other conditions for the dielectric displacem
and the potentials on sides 1 and 2. From Eq.~11!, which has
also to be expanded like Eq.~10!, and Eq.~9! we get after
some tedious algebra for each order inl a set of two equa-
tions: for l0 terms

S 1 21

1/e1k1 1/e2k2
D S s1

s2
D5S 0

DVD ~23!

and the solution

s15s25s5CGCDV, ~24!

with

CGC5S 1

e1k1
1

1

e2k2
D 21

; ~25!

and forl1 terms

S 1 21

1/e1k1,q 1/e2k2,q
D S â1~q!

â2~q!
D 5S 0

A~q! D , ~26!

with

A~q!5
s2

e2
S 1

r 2,q
21D2

s1

e1
S 1

r 1,q
21D , ~27!

and the solution

â1~q!5â2~q!5â~q!5CGC,qA~q!, ~28!

with
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CGC,q5S 1

e1k1,q
1

1

e2k2,q
D 21

; ~29!

and forl2 terms

S 1 21

1/e1k1,q 1/e2k2,q
D S b̂1~q,k!

b̂2~q,k!
D 5S 0

B~q,k! D , ~30!

with

B~q,k!5
1

2

s1k1

e1
f 1

s~q,k!1
1

2

s2k2

e2
f 2

s~q,k!

1
â1~k!

e1
f 1

a~q,k!2
â2~k!

e2
f 2

a~q,k! ~31!

and

f i
s~q,k!512

1

r i ,q
H ~2r i ,k21!1

~q2k!k

k i
2 S 2

r i ,k
21D J ,

~32!

f i
a~q,k!512

1

r i ,q
H r i ,k1

~q2k!k

k i
2r i ,k

J , ~33!

and the solution

b̂1~q,k!5b̂2~q,k!5b̂~q,k!5CGC,qB~q,k!. ~34!

Inserting Eqs.~24!, ~28!, and~34! into Eq. ~21! and per-
forming the back transformation in real space, the tw
dimensional potential profile is completely determined
terms of the solution parameterse i andk i , the potential drop
DV across the interface, and the height functionh(x).

A quantity of particular interest is the lateral potent
distribution at the interface positiony5h(x), which we can
now express through the potential on side 1:

V̂„q,h~x!…5DV
CGC

e1k1
H 2pd~q!1ĥ~q!F̂ ~1!~q!

1E dk

2p
ĥ~q2k!ĥ~k!F̂ ~2!~q,k!J , ~35!

with

F̂ ~1!~q!52 f 1
a~0,q!k12

CGC,q

r i ,q
F f 2

a~0,q!

e2
2

f 1
a~0,q!

e1
G ,

~36!

F̂ ~2!~q,k!52
1

2 Fk1f 1
s~q,k!2

CGC,q

r 1,q
S f 1

s~q,k!

e1
1

f 2
s~q,k!

e2
D G

2CGC,kS f 2
a~0,k!

e2
2

f 1
a~0,k!

e1
D

3Fk1f 1
a~q,k!1

CGC,q

r 1,q
S f 2

a~q,k!

e2
2

f 1
a~q,k!

e1
D G .
~37!
-

Due to the second-order contribution, the potential does
follow the modulation of the interface. This is also true f
the charge density since in the linear regime the charge d
sity is proportional to the potential.

In the limit e2→`, k2→`, which corresponds to an
ideal metal-solution interface, the first- and the second-or
contributions go to zero and we obtain an equipotential l
at the interface boundary

V„x,y5h~x!…5DV. ~38!

The constants and the response functions have then
form

s5e1k1DV, ~39!

â~q!52k1s~12r 1,q!, ~40!

b̂~q,k!5
1

2
sk1

2r 1,qf 1
s~q,k!1â~k!k1r 1,qf 1

a~q,k!. ~41!

If we insert Eqs.~39!–~41! into Eq. ~21! we obtain the same
expression for the potential as Goldsteinet al. @15#, who
started from an equipotential line at the surface as the bou
ary condition. So our approach is a general result for
potential drop across an interface between two conduc
materials, where the pure material on both sides can be
scribed by a dielectric constant. It is therefore also applica
to the interface between the conductor and semiconduc
the semiconductor and electrolyte, or two semiconductor

III. CAPACITY AND ROUGHNESS FUNCTION

One easily accessible experimental quantity is the diff
ential capacityC of an ITIES, which is defined as@21#

C5
dQ

d~DV!
. ~42!

HereQ is the total interfacial excess charge on one side
the interface. The total charge on each side is given by

Q15E dxE
h~x!

`

dy r1~x,y!, Q25E dxE
2`

h~x!

dy r2~x,y!.

~43!

Since in the linearized Poisson-Boltzmann approximation
charge density distribution is proportional to the potenti
r(x,y)52ek2V(x,y) @if V(x,6`)50], we can calculate
the charge very easily. The result up to second order in
height function is

2Q1[Q25Q5sAreal1E dk

2p
b̂~0,k!ĥ~2k!ĥ~k!,

~44!

where we have chosen the charge on side 2 to be positive
used the expression for the area of a weakly modulated
face:

Areal5E dxS 11
1

2
hx

2~x! D5E dx1E dk

2p
k2ĥ~2k!ĥ~k!.

~45!
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Of course the charge can also be obtained directly by i
grating Eq.~10! over the real surface. It is important to no
that b̂(0,k) depends onâ(k) and s. Therefore, even if the
terms linear inh(x) are averaged out by integration, the
have an influence on the second-order terms and mus
taken into account. On the other hand, if we take into
count only the nonlocal linear response of the dielectric d
placement at the surface, we obtain the trivial result thaQ
5sAreal. This shows that it is crucial to go beyond the line
response of the dielectric displacement.

If we substitute Eq.~24! into Eq. ~44!, we get the expres
sion for the capacity

C5ACGCR̃~k i ,e i !, ~46!

where A is the corresponding area of a flat surface a
R̃(k i ,e i) is given by

R̃~k i ,e i !5
Areal

A
1

h2

CGCDV E dk

2p
b̂~0,k!ĝ~k!. ~47!

Here we have also defined the two-point height-height c
relation function of the interface

ĝ~k![
ĥ~2k!ĥ~k!

Ah2 , ~48!

whereh is the height of the interface modulationh(x). Ac-
cording to Daikhinet al. @16#, the functionR̃(k i ,e i) is called
the roughness functionbecause it can be calculated fro
experimental data of the ratioC/ACGC in order to get infor-
mation about the roughness of the interface. Since the
sponse functionb̂(0,k) itself depends also onCGCDV and
contains a contribution 12Areal/A we can write the rough-
ness function more conveniently as

R̃~k i ,e i !511h2CGCE dk

2p
ĝ~k!

3H k1

e1
S 12

1

r 1,k
D1

k2

e2
S 12

1

r 2,k
D1CGC,k

3F 1

e2
S 12

1

r 2,k
D2

1

e1
S 12

1

r 1,k
D G2J . ~49!

This shows that the capacity for ITIES with a modulat
interface is always greater than the Gouy-Chapman capa
since R̃(k i ,e i)>1. The roughness function determines t
deviation of the capacity from the Gouy-Chapman predict
in terms of the height-height correlation function and d
scribes the interplay between the different length scales
the system. This is a quite general result and it can be app
also to semiconductor-metal, semiconductor-electrolyte,
metal-electrolyte interfaces. The roughness function for
ideal metal-solution interface, for example, can be easily
tained from Eq.~49! by performing the limite2→`, k2
→`. In this case the roughness function reduces to

R̃~k1 ,e1!511k1
2h2E dk

2p
ĝ~k!~r 1,k21!, ~50!
e-

be
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-
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which is exactly the result obtained by Daikhinet al. @16#,
who started from an equipotential line as boundary con
tion. For all other cases, especially for semiconduct
electrolyte interfaces where the charge carrier concentra
on both sides is low, one should apply Eq.~49! instead of Eq.
~50!.

Besides the information about the surface via the heig
height correlation functionĝ(k), the functionR̃(k i ,e i) has
another important consequence. The Gouy-Chapman ca
ity for liquid-liquid interfaces can simply be written as
series combination of the two independent diffuse layer
pacities on sides 1 and 2@see Eq.~25!#. This is no longer true
if the interface deviates from a planar geometry since
response functionb̂(0,k) introduces a coupling between th
two diffuse layer capacities. This shows that even on
mean field level we have a coupling between the two diffu
layers, which vanishes forh50. In other words, the absenc
of the coupling in the Gouy-Chapman theory is due to
symmetry of the interface, but generally this symmetry
broken and the two diffuse layers are not independent
each other.

For a better understanding of this coupling we consi
the special case ofk15k25k. In this case the roughnes
function decouples into two parts, one of which is indepe
dent of the dielectric constants

R̃~k,e1 ,e2!511k2h2E dk

2p
ĝ~k!S 12

1

r k
D

3H 11~r k21!S e12e2

e11e2
D 2J . ~51!

We can simplify this expression further if we make anoth
approximation. Assume that the height function has a sm
est correlation lengthl min and that the Debye length is muc
smaller thanl min , i.e., k l min@1. In this limit we can expand
the quantityr k , which yields

R̃~k,e1 ,e2!5
Areal

A
2

3

8

^H2&
k2 1

1

4

^H2&
k2 S e12e2

e11e2
D 2

,

~52!

with the mean squared curvature^H2& of the interface

^H2&5E dk

2p
k4h2ĝ~k!5

1

A E dx hxx
2 ~x!. ~53!

Equation ~52! can be interpreted in the following way
Instead of representing the Gouy-Chapman capacity as a
ries combination of two plate capacitors, in our case it
more convenient to represent it as only one plate capac
with two different dielectric media in between. This type
capacitor can also be described by Eq.~25!. The average
thickness of one sort of dielectric is given by 1/k i and the
boundary between is just described by the height funct
h(x). Then the terms independent ofe in Eq. ~52! simply
take into account the deviation of the two capacitor pla
from a planar geometry. The farther the plates are from
modulated interface, the flatter they are because the dif
layer ‘‘smears’’ out the modulation of the interface; hen
the sum of these terms becomes smaller. In addition the
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a coupling due to the difference of the dielectric media. T
coupling increases with increasing ratio of^H2&/k2 or
lDB

2 /^R2&, whereR is the curvature radius. For a small cu
vature radius the electric field in the diffuse double lay
which is a function of both dielectric constants, is very inh
mogeneous with respect to the lateral dimension. If, ho
ever, the Debye length is smaller than the curvature rad
this inhomogeneity effect is much lower since the elec
field is already considerable screened. It vanishes also
equal dielectric constants because then this effect is equa
opposite on both sides of the interface. In the general cas
k1Þk2 , both these effects are coupled together and the
havior is too complicated to represent in a simple picture

Before we calculate the roughness function for a spec
example, it is illustrative to investigate two extreme limitin
cases: If the height function has a smallest correlation len
l min , then the quantityr 2,k has the limit

lim
k2→`

r 2,k51. ~54!

The roughness function@Eq. ~49!# is now completely deter-
mined by the Debye length of side 1 and it is the same as
the metal-solution interface@Eq. ~50!#. This is of course ex-
pected since at this level of description, the screening on
2 is now perfect, like for an ideal metal. If we further assum
that k1l min@1, we can develop the quantityr 1,k and the
roughness function can be approximated by

R̃~k1!5
Areal

A
2

1

8

^H2&
k1

2 . ~55!

In this limit the roughness function is determined by the ra
of the curvature and the inverse Debye length. Equati
~54! and ~55! show that the geometrical roughness of t
interface is accessible by capacity measurements only in
limit of zero Debye length onboth sides, since then both
diffuse layers follow exactly the modulation of the interfac
On the other hand, if onlyoneDebye length goes to infinity
one recovers the Gouy-Chapman capacity.

In order to investigate the behavior of the roughness fu
tion over the complete range of the Debye lengths on b
sides, we assume that the modulation functionh(x) can be
described by a simple deterministic function

h~x!5h cos
2p

l
x, ĥ~k!5

hA~dm,11dm,21!

2
, ~56!

where k52pm/l and m50,61,62,... . The integral
*dk/2p in Eq. ~49! can then be replaced by the summati
(1/A)(k and the roughness function is simply given by

R̃~k i ,e i !511
1

2
h2H CGC

k1

e1
S 12

1

r 1,p
D1

k2

e2
S 12

1

r 2,p
D

1CGC,pF 1

e2
S 12

1

r 2,p
D2

1

e1
S 12

1

r 1,p
D G2J .

~57!

A three-dimensional plot of this function is shown in Fi
1. It can be clearly seen that the roughness function rea
the geometrical roughness only for the casek1h5k2h→`.
s
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However, as discussed above, if the concentration on
side is zero, the roughness function is one. Furthermore,
seen that the roughness function is close to the limiting va
far before kh@1. Hence the approximation made for th
perturbative calculation of the potential is valid over t
whole interesting range. The roughness function is also
symmetric with respect to the linek1h5k2h. This is due to
the difference of the dielectric constants; the greater this
ference, the greater the asymmetry. Another interesting
fect is the following: If the inverse Debye length on the si
with the higher dielectric constant is small and fixed~k1
small!, the roughness function is nonmonotonic with resp
to k2 . Unfortunately, in experimental investigations
ITIES the concentrations of the two electrolytes are usua
changed symmetrically; therefore, this type of behavior c
not be observed.

In Fig. 2 we compare the roughness function for vario
differences of the two dielectric constants andk15k2 . This
figure shows that the roughness, as seen in the capacity
is the more pronounced the greater the difference of the
electric constants. In the smallk limit the roughness function
decays more smoothly to one, when the difference of
dielectric constants is small. Note that the upper curve c
responds also to the roughness function of a metal-solu
interface@Eq. ~50!#.

FIG. 1. Roughness function for a periodic interface@Eq. ~57!#
with h56 Å, l524 Å, e1580, and e2510. The geometrical
roughnessAreal/A is 1.62.

FIG. 2. Roughness function for a periodic interface@Eq. ~57!#
for different values ofe1 ande2 , with h55 Å andl520 Å.
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Figure 3 finally compares the roughness function for d
ferent parameters ofh and l. For a large value ofh/l the
capacity of a modulated ITIES can be considerable hig
than the result predicted by the Gouy-Chapman theo
These values are in agreement with experimental findi
@5#. In @5# the higher capacity was explained by the existen
of a mixed solvent region, including the ions, which resu
in an overlapping of the two space charge regions. Our
sults are not in contradiction with this. Indeed, we can arg
in a similar way, because an averaging over the lateral di
tion of the ionic density profiles appears also as an ‘‘ov
lapping’’ if one considers the midplane of the interface ay
50.

IV. FREE ENERGY AND BENDING MODULUS

The externally controlled variable for an ideally polari
able ITIES is the total potential dropDV across the interface
Therefore, we have to calculate the free energy in term
DV, which is most easily done by starting from the Lip
mann equation@21#

S ]g

]~DV! D
m1 ,m2

52
Q

Areal
. ~58!

Integration on both sides leads to the expression

Areal~g2g0!5DF52E
0

DV

Q~DV8!d~DV8!. ~59!

Here g0 is the surface tension in the absence of a poten
drop andDF is the change in free energy due to the form
tion of the diffuse double layers. ExpressingQ through the
capacity from Eq.~46! simply yields

DF

A
52

1

2
CGC~DV!2R̃~k i ,e i !. ~60!

This shows that also the free energy of a modulated ITIE
determined by the behavior of the roughness function.

As mentioned in the Introduction, liquid-liquid interface
can serve as a model for biological membranes, which o
have a very low surface tension. The modulation of
membranes is then mostly governed by the elastic ben

FIG. 3. Roughness function for a periodic interface@Eq. ~57!#
for different values ofl, with h55 Å, e1580, ande2510.
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moduluskc . These membranes are usually immersed i
electrolytes and it is therefore important to know the elect
static contribution to the bending modulus. Sincekc has the
dimensions of energy, the electrostatic contribution to it m
have the formf e(DV)2/k or f s0

2/ek3 for a constant surface
charge. Heref is a dimensionless constant that is determin
by the boundary condition. The exact value and the sign of
are important sincekc enters, for example, exponentially th
persistence length@23#, which is a measure for the distanc
over which the normals of the surface become decorrela
and it can be measured with great precision@24#. Phenom-
enologically, the total free energy of a two-dimension
modulated surface can be written as@13,18#

Fsurf5g0E dS1kcE dS~H2c0!21 k̃E dS K, ~61!

wherec0 is the spontaneous curvature andk̃ the Gaussian
bending modulus. The mean curvatureH and the Gaussian
curvatureK are given by

H5divS “h~x,y!

A11@“h~x,y!#2D ,

K5
hxxhyy2hxy

2

A11@“h~x,y!#2
,

and the metricdS is

dS5
dxdy

A11@“h~x,y!#2
. ~62!

For a one-dimensional and only weakly modulated surf
with zero spontaneous curvature this expression simplifie

Fsurf5g0E dxS 11
1

2
hx

2~x! D1
1

2
kcE dxhxx

2 ~x!. ~63!

Using again the limitk l min@1 and assuming equal Deby
lengths for simplicity, we can expand the roughness funct
and write the free energy@Eq. ~59!# in this limit as:

F5Fg02
1

2 S e1e2

e11e2
Dk~DV!2G E dxS 11

1

2
hx

2~x! D
1

1

16S e1e2

e11e2
D ~DV!2

k F322S e12e2

e11e2
D 2G E dx hxx

2 ~x!.

~64!

If we compare this expression for the free energy with
coefficients of the expression in Eq.~63!, we can identify
2e1e2k(DV)2/2(e11e2) as the electrostatic contribution t
the surface tension. The electrostatic contribution to
bending modulus is then given by

kc~DV!5
1

8 S e1e2

e11e2
D ~DV!2

k F322S e12e2

e11e2
D 2G . ~65!

In the limit e2@e1 this expression reduces to
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kc~DV!5
1

8

e1~DV!2

k
, ~66!

whereDV is now the equipotential at the surface@see Eq.
~38!#. This is just the result obtained previously by seve
authors using different approaches@15,22,25,26#. Note that
we obtain this result also in the limitk2@k1 . In both cases
the electrostatic contribution to the bending modulus is c
trolled by that side, in which most of the potential drop o
curs, since on the other side the electric field is extrem
shielded. If instead the potential drop occurs on both sid
the full equation~65! should be applied. In the special ca
of e15e2 we obtain

kc~DV!5
3

16

e~DV!2

k
. ~67!

This result differs from that obtained by other autho
@25,26#, who considered the curvature energy of a charg
membrane with electrolytes on both sides. They obtaine
value of kc(V0)5eV0

2/4k for a perfectly conducting mem
brane with an equipotential lineV0 at the boundary. In our
caseDV is the total potential drop across the interface a
the potential at the interface is not constant@see Eq.~35!#.

Often the membrane carries a constant surface charge
to charged groups in the molecules that constitute the m
brane. The electrolyte contains then also the counterion
these charged groups. We can model this effect if we ass
that the total charge on side 1 consists of a constant sing
parts0 and the diffuse part. In this case we have to write
boundary condition Eq.~9! as

n~x!@D1„x,y5h~x!…2D2„x,y5h~x!…#5s0 . ~68!

If we perform the same type of calculation as described
Sec. II, we obtain in the special case ofk25k1 for the total
chargeQ the expression

Q

A
5DVCGCR̃~k,e1 ,e2!

2s0CGC

Areal

A S 1

e1k
1Rs0

~k,e1 ,e2! D , ~69!

with

Rs0
~k i ,e i !5kh2E dk

2p
ĝ~k!~12r k!

3S 1

r k
21D 1

e11e2
S e12e2

e11e2
D . ~70!

If we now substitute Eq.~69! into the Lippmann equation
and proceed in the same way as before, we obtain an a
tional contribution to the bending modulus

kc5kc~DV!1kc
s0~DV,s0!, ~71!

with

kc
s0~DV,s0!5

DVs0

k2

e1e2

~e11e2!2 S e12e2

e11e2
D . ~72!
l

-
-
ly
s,

d
a

d

ue
-

of
e

lar
e

n

di-

Note that this contribution is asymmetrical inDV, s0 , and
e12e2 . Furthermore, it vanishes fore15e2 . If, for example,
DVs0.0 ande1,e2 , then the contribution to the bendin
modulus is negative and the interface is destabilized. Du
the second term in Eq.~69! we obtain a potential of zero
charge if Q50. The zeroth order of this potential of zer
charge is justDVpzc

(0) 5s0 /ek. Since the terms proportiona
to the bending modulus give already a second-order con
bution to the free energy, we can calculate the bend
modulus forDV5DVpzc

(0) and obtain in the special case o
e15e2

kc~s0!5
3

16

s0
2

ek3 . ~73!

This result is three times greater than that obtained
@25,26#. So the response of the dielectric displacement at
interface to the curvature leads to a stabilization of the
interface compared to the case with a constant dielectric
placement at the interface.

V. CONCLUSION

In this work we have developed an extension to the lin
Gouy-Chapman theory, which takes into account a modu
tion of the interface position. Special emphasis was given
the boundary condition for a liquid-liquid interface. The a
propriate boundary condition fixes neither the potential n
the surface charge at the interface position. Instead, the
electric displacement at the boundary was allowed to var
the lateral direction. This variation is due to a nonlocal a
nonlinear response of the dielectric displacement to the
turbation from a flat interface geometry.

Within this model it was shown that the capacity of a
interface between two immiscible electrolyte solutions c
be significantly higher than the value predicted by the Go
Chapman theory. The deviation depends on the interplay
tween the Debye lengths of the two solutions and the he
and characteristic length of the interface modulation. T
interplay is described by a roughness function, which g
erns also the free energy of the system. Since the rough
function is just the ratio of the ‘‘real’’ capacity to the Gouy
Chapman capacity, it can be measured very easily. If
roughness function is known for various concentrations, o
can get information about the height-height correlation fu
tion of the interface.

Furthermore, we calculated the electrostatic contribut
to the elastic bending modulus, which determines the cur
ture fluctuations of the interface. Our result is different fro
previous ones since we have employed a different bound
condition.

The model we used in this work to describe the liqu
liquid interface between to immiscible electrolyte solutio
is of course idealized. Thus it neglects the effect of spec
ion adsorption or interfacial ion association, but from expe
mental investigations of liquid-liquid interfaces it is we
known that theses effects play an important role. In futu
work we will incorporate these effects into our model.
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